福建漳州人,南京林业大学生态与环境学院教授、博士生导师、高层次引进人才、中国生态学会生态模型专业委员会委员,中国林学会计算机应用专业委员会理事、Methods in Ecology and Evolution、Journal of Plant Ecology 、《生物多样性》和《南京林业大学学报(自科版)》等期刊编委。研究方向为数量生态学和生物统计,发表论文50多篇。主持国家自然科学基金、科技部、环保部和国家林草局等课题十项。近年来致力于在国内生态学界推广R语言和数量分析方法,开发有R程序包rdacca.hp、glmm.hp和gam.hp,利用“平均共享方差”方法获取典范排序分析(RDA, CCA和dbRDA),广义混合效应模型(GLMM)和广义可加模型中单个解释变量的贡献,已经被广泛应用于生态学与环境科学数据分析。出版译著《数量生态学-R语言应用》(第一版、第二版)(高等教育出版社),该书成为国内高校生态学与R语言教学的基本教材,并获得第二十届中国输出引入版优秀图书奖,目前已经累计发行3万多册。并多次受邀国内各大高校与科研院所开展R语言的培训,为R语言和生态数量方法在国内的生态与环境科学界的普及做出重要的贡献。 随着生态学进入大数据时代,先进的数据分析技术和生态统计模型对于当代生态学研究具有举足轻重的作用。近年来国内生态学研究发展迅速,高水平的研究论文也层出不穷,相比之下,生态统计学领域的研究并没有太多成果。另外,国内很多研究人员长期满足于使用国外软件进行数据分析,缺乏自主研发的积极性,生态统计学软件的在国内发展也受到很大限制。本课题组主要任务为国内生态与环境领域学者普及最新的数量学方法,开发新的数量学方法解决生态、环境和林学遇到的统计问题,并推动国内生态统计软件的研发,欢迎对本课题组研究方向感兴趣的本科生、研究生、博士生、博士后加入我的研究团队! 教育背景 · 1998年-2002年 北京林业大学生物学国家理科基地班,获理学学士学位 · 2002年 - 2008年 中国科学院植物研究所,硕博连读 获理学博士学位 工作经历 · 2023年9月-至今,南京林业大学生态与环境学院 教授 博导 自然保护地系主任 数量生态学研究中心主任 · 2022年9月-2023年8月,南京林业大学生物与环境学院 教授 博导 · 2020年1月-2022年8月,中国科学院大学 岗位教师 · 2017年3月-2022年8月, 中国科学院植物研究所植被与环境变化国家重点实验室 副研究员 · 2014年11月 - 2015年11月,加拿大蒙特利尔大学生物系,数量生态学科创始人Pierre Legendre实验室访问学者 · 2009年12月 - 2010年5月,美国新墨西哥大学生物系James Brown 实验室访问学者 · 2008年5月 – 2017年2月,中科院植物所植被与环境变化国家重点实验室 助理研究员
-------------------------------------------------------------------------------------------------------------------------------------------------------------------- Basic information:
Currently, I hold the position of Principal Investigator (PI) for Quantitative Ecology at Nanjing Forestry University in China, having recently moved from the Institute of Botany at the Chinese Academy of Sciences. I previously served as a visiting scholar in the laboratory of Pierre Legendre at the University of Montreal, the founder of numerical ecology. My research focuses on advancing statistical methods to address ecological challenges, particularly the absence of quantitative frameworks for evaluating the overall importance of individual predictors in multi-response regression models. To confront this issue, my colleagues and I have established mathematical connections between commonality analysis, variation, and hierarchical partitioning. These frameworks have been expanded to accommodate any number of predictor variables or groups, as demonstrated in variation partitioning. The implementation of these generalized frameworks can be found in the R package rdacca.hp. Our research, highlighted in the 4th issue of Methods in Ecology and Evolution in 2022 (https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13800), has gained substantial recognition, with over 500 citations on Google Scholar and 460 citations on Web of Science on July 2024. Furthermore, we have extended the 'average shared variance' algorithm to decompose the Nakagawa marginal R2 of Generalized Linear Mixed Models (GLMMs) and ajusted R2 (explained deviance) in GAMs. Introducing two new package, glmm.hp and gam.hp, we provide a method to decompose the marginal R2 of GLMMs (including multiple regression) for assessing the relative importance of each fixed predictor. Three papers detailing packages can be found at the following links: https://academic.oup.com/jpe/article/15/6/1302/6845730 https://academic.oup.com/jpe/advance-article/doi/10.1093/jpe/rtad038/7444979. https://www.sciencedirect.com/science/article/pii/S2468265924000854 In my commitment to disseminating knowledge, I have organized and led numerous workshops on statistical ecology using R in China, drawing participation from thousands of enthusiasts. Additionally, I contribute as an associate editor for Methods in Ecology and Evolution.
Education ---------------------------------------------------------------------------------------------- Bachelor. 2002. Biology Sciences. Beijing Forestry University, Beijing. Ph.D. 2008. Ecology. Institute of Botany, Chinese Academy of Sciences, Beijing.
---------------------------------------------------------------------------------------------- Professional Experience ---------------------------------------------------------------------------------------------- From April 2008 to February 2017, assistant professor in Institute of Botany, Chinese Academy of Sciences From March 2017 to September 2022, associate professor in Institute of Botany, Chinese Academy of Sciences From December 2009 to May 2010, a visiting scholar in James Brown`s laboratory on University of New Mexico in USA. From November 2014 to November 2015, a visiting scholar in Pierre Legendre`s laboratory on University of Montreal in Canada. From October 2022 to now, full professor and PI in Nanjing Forestry University in China
----------------------------------------------------------------------------------------------
|
代表性论文 (Main publications):
1. Jiangshan Lai*, Yi Zou, Jinlong Zhang, Pedro R. Peres-Neto. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution,13(4):782-788(截止2024年8月已经被引用500多次,从2022年7月开始连续12次入选Clarivate 前0.1%热点论文, 被引次数位列全球环境生态类热点论文第2名) 2. Jiangshan Lai*, Yi Zou, Shuang Zhang, Xiaoguang Zhang. Lingfeng Mao.2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology 15(6):1302-1307. (截止2024年8月被引100多次,入选 Clarivate 2023年5月,2024年1月,3月、5月、7月前0.1%热点论文) 3. Jiangshan Lai, Jing Tang, Tingyuan Li, Aiying Zhan, Lingfeng Mao. 2024. Evaluating the relative importance of predictors in Generalized Additive Models using the gam.hp R package. Plant Diversity, 46(4): 542-546 https://www.sciencedirect.com/science/article/pii/S2468265924000854
4. Jiangshan Lai*, Weijie Zhu, Dongfang, Cui, Lingfeng Mao. 2023. Extension of the glmm.hp Package to Zero-Inflated Generalized Linear Mixed Models and Multiple Regression 16(6):rtad038, https://doi.org/10.1093/jpe/rtad038 5. Jiangshan Lai, Weijie Zhu, Dongfang Cui, Dayong Fan, Lingfeng Mao, The use of R in forestry research, Journal of Plant Ecology, 2023, rtad047, https://doi.org/10.1093/jpe/rtad047 6.Jiangshan Lai,Dongfang Cui, Weijie Zhu, Lingfeng Mao. 2023. The Use of R and R Packages in Biodiversity Conservation Research. Diversity 15, 12: 1202. https://doi.org/10.3390/d15121202 7. Yasi Liu, Xiangping Wang , Dayong Fan*, Jiangshan Lai*. 2022 The use of R in photosynthesis research. Functional Plant Biology. 49, 565–572. 8. Jiangshan Lai*, Christopher J. Lortie, Robert A. Muenchen, Jian Yang, Keping, Ma. 2019. Evaluating the popularity of R in ecology. Ecosphere. 10(1):e02567 9. Joel E. Cohen*#, Jiangshan Lai#, David A. Coomes and Robert B. Allen. 2016 Taylor’s law and related allometric power laws in New Zealand mountain beech forests: the roles of space, time and environment. Oikos. 125 (9): 1342-1357(共同一作) 10. Jiangshan Lai, David A. Coomes, Xiaojun, Du, Chang - fu Hsieh, I-Fang Sun, Wei-chun Chao, Xiangcheng Mi, Haibao Ren, Xugao, Wang, Zhanqing Hao,and Keping Ma* .2013. A general combined model to describe tree-diameter distributions within subtropical and temperate forest communities. Oikos. 122 (11): 1636-1642 11. Jiangshan Lai, Bo Yang, Dunmei Lin, Andrew J. Kerkhoff, Keping Ma *. 2013. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS ONE, 8: e77007 12. Jiangshan Lai, Xiangcheng Mi, Haibao Ren, Keping Ma*. 2009. Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science. 20(3):415-423. 13. 刘尧,于馨,于洋,胡文浩,赖江山*. 2023. rdacca.hp包在生态学数据分析中的应用:案例与进展. 植物生态学报.47:134-144 DOI: 10.17521/cjpe.2022.0314 14. 李宁, 徐武兵, 赖江山*, 杨波, 林敦梅, 马克平. 2013. 亚热带常绿阔叶林8个常见树种粗根生物量. 科学通报. 58:329-335 15. 赖江山. 2013.生态学多元数据排序分析软件Canoco 5介绍. 生物多样性.21:753-757 16. 赖江山, 米湘成. 2011. 基于Vegan 软件包的生态学数据排序分析.见:马克平主编:生物多样性研究进展Ⅸ, 北京: 气象出版社,351-362 17. 赖江山, 米湘成, 任海保, 马克平. 2010. 基于多元回归树的常绿阔叶林群丛数量分类—以古田山24 hm2森林样地为例. 植物生态学报: 34: 761-7 18. 赖江山, 张 谧, 谢宗强*. 2006. 三峡库区常绿阔叶林优势种群的结构和格局动态. 生态学报, 26:1073-1079 19. 赖江山, 张 谧, 谢宗强*. 2006. 三峡库区世坪常绿阔叶林群落特征. 生物多样性, 14:435-443. 20. 赖江山, 李庆梅, 谢宗强*. 2003. 濒危植物秦岭冷杉种子萌发特性的研究. 植物生态学报, 25:661-666. 译著 1.Daniel Borcard, François Gillet, Pierre Legendre 著,(赖江山 译).2014. 数量生态学-R语言的应用,北京:高等教育出版社 2.Daniel Borcard, François Gillet, Pierre Legendre 著,(赖江山 译).2020. 数量生态学-R语言的应用(第二版),北京:高等教育出版社 (荣获第二十届引进版优秀图书奖)。
|